Blue oat mite

Blue oat mites (BOM) (Penthaleus spp.) are species of earth mites that are major agricultural pests of southern Australia and other parts of the world. They attack various pasture, vegetable and crop plants.

BOM were introduced from Europe and first recorded in New South Wales in 1921. Management of these mites in Australia has been complicated by the discovery of 3 distinct species of BOM, whereas earlier research had assumed just a single species.

Identifying BOM

Adult BOM are 1mm in length and approximately 0.7mm to 0.8mm wide, with 8 red-orange legs. They have a blue-black coloured body with a characteristic red mark on their back (Figure 1).

Adult blue oat mite with black body, bright red-orange legs and dark red patch on its back

Larvae are approximately 0.3mm long, are oval in shape and have three pairs of legs.

On hatching, BOM are pink-orange in colour, soon becoming brownish and then green.

Confusion with redlegged earth mite

BOM are often misidentified as redlegged earth mites (RLEM) in the field, which has meant that the damage caused by BOM has been under-represented.

Despite having a similar appearance, RLEM and BOM can be readily distinguished from each other. RLEM have a completely black-coloured body and tend to feed in larger groups of up to 30 individuals. BOM have the red mark on their back and are usually found singularly or in very small groups.

Blue oat mite in Australia

Map of Australia showing blue oat mite is present in all of Victoria, all except the north west of New South Wales, south-eastern Queensland, south-eastern South Australia, south-west of Western Australia and the majority of eastern Tasmania

The distribution of BOM is likely to be limited by the environmental conditions needed to successfully enter and complete the over-summering phase (known as diapause), as well as conditions needed for emergence to coincide with the growth of winter pastures and crops.

BOM are widespread throughout most agricultural regions of Australia with a Mediterranean-type climate.

BOM are one of the most important pest mites in cropping and pastoral areas of:

  • Victoria
  • New South Wales
  • Tasmania

They are also a pest in:

  • southern Queensland
  • the south-east of South Australia
  • the south-west of Western Australia

See Figure 2.The distribution of blue oat mites in Australia (shaded areas indicate known distribution).

Recent surveys have shown an expansion of the range of BOM in Australia over the last 30 years.

How BOM spreads

During winter, individual adult BOM move between plants over distances of several metres. Long range dispersal is thought to occur via movement of eggs carried on soil stuck to livestock and farm machinery, and through the transportation of plant material.

Movement also occurs during summer when diapause eggs are blown by winds.

Biology

There are 3 pest species of BOM in Australia, which complicates control. These species differ in their:

  • distribution
  • pesticide tolerance
  • crop plant preferences

Despite these differences, all BOM species are often treated identically in terms of control. This is a concern as eradication of 1 species may result in another BOM species becoming more abundant.

Microscopic view of (a) P. major showing rows of longer bristles on its back and (b) P. falcatus with an irregular pattern of short bristles

Distinguishing between the BOM species in the field is difficult because a microscope is needed to see the morphological traits that separate each species.

The main difference between species is the length and number of setae (bristle or hair-like structures) on the back of the mite (Figures 3 and 4):

  • Penthaleus major has long setae arranged in 4 to 5 longitudinal rows.
  • Penthaleus falcatus has a higher number of short setae scattered irregularly.
  • Penthaleus tectus has setae of medium length and number.

Microscopic view of (c) P. tectus

Life cycle

BOM are active in the cool, wet part of the year, usually between April and late October. During this time they pass through 2 or 3 generations, with each generation lasting 8 to 10 weeks.

They spend the remaining months protected as 'diapause' or over-summering eggs that are resistant to the heat and desiccation of summer. These hatch in autumn after cool temperatures and adequate rainfall, when conditions are optimal for mite survival. Swarms of mites may then attack emerging crop and pasture seedlings.

Female mites deposit eggs either singly or in clusters of 3 to 6 on the leaves, stems and roots of food plants or on the soil surface. Those on the leaves are usually fastened by a slimy substance that is secreted next to and on the stem of plants.

Unlike many agricultural pests in Australia, BOM reproduce asexually. This mode of reproduction results in populations made up of female 'clones' that can respond differently to environmental and chemical conditions. This may influence the likelihood of populations developing resistance and means BOM populations could respond differently to control strategies.

Behaviour

BOM spend the majority of their time on the soil surface, rather than on the foliage of plants. They are most active during the cooler parts of the day, tending to feed in the mornings and in cloudy weather. They seek protection during the warmer part of the day on moist soil surfaces or under foliage, and may even dig into the soil under extreme conditions.

BOM attack a variety of agriculturally important plants, including:

  • cereals
  • grasses
  • canola
  • field peas
  • legumes

They also attack many weeds.

There are differences in the plant types attacked by the three BOM species (Table 1):

  • P. major mostly feeds on oats and thick-bladed grasses within pastures.
  • P. falcatus mostly attacks canola and broad-leaved weeds.
  • P. tectus prefers cereals.

These preferences can be used as an indication of the species present in a particular paddock, but confirmation by an expert is recommended.

Table 1: List of agriculturally important crops attacked by blue oat mites in Australia

Species

P. major

P. falcatus

P. tectus

Pasture

commonly attacked

occasionally attacked

commonly attacked

Cereals

commonly attacked

occasionally attacked

commonly attacked

Canola

rarely attacked

commonly attacked

rarely attacked

Lucerne

occasionally attacked

rarely attacked

occasionally attacked

Lentils

occasionally attacked

rarely attacked

occasionally attacked

Peas

occasionally attacked

occasionally attacked

rarely attacked

Damage

Typical mite damage appears as 'silvering' or 'whitening' of the attacked foliage. Mites use adapted mouthparts to lacerate the leaf tissue of plants and suck up the discharged sap. Resulting cell and cuticle destruction:

  • promotes desiccation
  • retards photosynthesis
  • produces the characteristic silvering that is often mistaken as frost damage (Figure 5)

Canola seedling damaged with white spotted trails caused by blue oat mites

BOM are most damaging to newly establishing pastures and emerging crops, greatly reducing seedling survival and retarding development.

Young mites prefer to feed on the sheath leaves or tender shoots near the soil surface, while adults feed on more mature plant tissues. BOM feeding reduces the productivity of established plants and is directly responsible for reductions in pasture palatability to livestock. Even in established pastures, damage from large infestations may significantly affect productivity.

The impact of mite damage is increased when plants are under stress from adverse conditions such as prolonged dry weather or waterlogged soils. Ideal growing conditions for seedlings enable plants to tolerate higher numbers of mites.

Monitoring

Carefully inspect susceptible pastures and crops from autumn to spring for the presence of mites and evidence of damage. It is especially important to inspect crops regularly in the first 3 to 5 weeks after sowing.

Tip of a pasture seedling covered in blue oat mites

Mites are best detected feeding on the leaves in the morning or on overcast days (Figure 6).

Control

Chemical control methods

Chemical control is often one of the methods available for plant pests as part of an integrated pest management program. More information is available from:

  • your local nursery
  • cropping consultants
  • chemical resellers
  • the pesticide manufacturer

For information on currently registered and or permitted chemicals, check the Australian Pesticides and Veterinary Medicines Authority (APVMA) website.

Always consult the label and Safety Data Sheet before using any chemical product.

The different species of mites have varying tolerance levels to pesticides, which can result in control failure. Pesticides are also only effective against active stages — they don't kill mite eggs.

Biological and cultural control

Integrated pest management programs can complement current chemical control methods by introducing non-chemical options, such as:

  • cultural control
  • biological control

Using natural predators

Although no systematic survey has been conducted, a number of predator species are known to attack earth mites in Australia:

  • The French anystis mite is an effective predator but is limited in distribution.
  • Snout mites will also prey upon BOM, particularly in pastures.
  • The fungal pathogen, Neozygites acaracida, is prevalent in BOM populations during wet winters and could be responsible for observed 'population crashes'.

The most important predators of BOM appear to be other mites, although small beetles, spiders and ants can also play a role.

Preserving natural enemies when using chemicals is often difficult because the pesticides generally used are broad-spectrum and kill beneficial species as well as the pests. You can reduce the impact on natural enemies by using a pesticide that has the least impact and by minimising the number of applications.

Although there are few registered alternatives for BOM control, there are groups such as the chloronicotinyls — which are used in some seed treatments — that have low-moderate impacts on many natural enemies.

Crop and pasture management

Cultural controls such as rotating crops or pastures with non-host crops can reduce pest colonisation, reproduction and survival, decreasing the need for chemical control.

  • When P. major is the predominant species, canola and lentils are potentially useful rotation crops, while pastures containing predominantly thick-bladed grasses should be carefully monitored and rotated with other crops.
  • In situations where P. falcatus is the most abundant mite species, farmers can consider rotating crops with lentils.
  • For P. tectus, rotations that involve canola may be the most effective means of reducing the impact of the mite.

Many cultural control methods for BOM can also suppress other mite pests, such as RLEM. Cultivation will significantly decrease the number of over-summering eggs, while hot stubble burns can provide a similar effect. Many broad-leaved weeds provide an alternative food source, particularly for juvenile stages. As such, clean fallowing and the control of weeds within crops and around pasture perimeters, especially of bristly ox tongue and cats ear, can help reduce BOM numbers.

Appropriate grazing management can also reduce mite populations to below damaging thresholds. This may be because shorter pasture results in lower relative humidity, which increases mite mortality and limits food resources. Grazing pastures in spring to less than 2 t/ha Feed On Offer (dry weight), can reduce mite numbers to low levels and provide some level of control the following year.

Acknowledgement

Paul Umina, Centre for Environmental Stress and Adaptation Research, The University of Melbourne. July 2007.

This Information Note was prepared with assistance from Michelle Pardy, Andrew Weeks and the Grains Research and Development Corporation through the National Invertebrate Pest Initiative.

Centre for Environmental Stress and Adaptation Research Grains Research and Development Corporation

Page last updated: 20 Jul 2020